Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures
نویسندگان
چکیده
منابع مشابه
Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures
The modeling of finite-extent semiconductor nanostructures that are embedded in a host material requires a proper boundary treatment for a finite simulation domain. For the study of a self-assembled InAs dot embedded in GaAs, three kinds of boundary conditions are examined within the empirical tight-binding model: ~i! the periodic boundary condition, ~ii! raising the orbital energies of surface...
متن کاملElectronic Transport Properties of Semiconductor Nanostructures
Electronic Transport Properties of Semiconductor Nanostructures
متن کاملStudy nanostructures of semiconductor zinc oxide (ZnO) as a photocatalyst for the degradation of organic pollutants
In the present study, comparison of photocatalytic activity of nanostructures semiconductor zinc oxide (ZnO) was prepared using the different methods on the degradation of organic dye such as methylene blue that was investigated. Previous studies have proved that such semiconductors can degrade most kinds of persistent organic pollutants, such as detergents, dyes, pesticides and volatile organ...
متن کاملNanoPSE: Nanoscience Problem Solving Environment for atomistic electronic structure of semiconductor nanostructures
Researchers at the National Renewable Energy Laboratory and their collaborators have developed over the past ∼10 years a set of algorithms for an atomistic description of the electronic structure of nanostructures, based on plane-wave pseudopotentials and configurationinteraction. The present contribution describes the first step in assembling these various codes into a single, portable, integr...
متن کاملImportance of bulk states for the electronic structure of semiconductor surfaces: implications for finite slabs.
We investigate the influence of slab thickness on the electronic structure of the Si(1 0 0)- p([Formula: see text]) surface in density functional theory (DFT) calculations, considering both density of states and band structure. Our calculations, with slab thicknesses of up to 78 atomic layers, reveal that the slab thickness profoundly affects the surface band structure, particularly the danglin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2004
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.69.045316